A STABILITY INDICATING ASSAY METHOD DEVELOPMENT AND VALIDATION FOR THE ESTIMATION OF EMPAGLIFLOZIN AND METFORMIN HYDROCHLORIDE

Govindaswamy Bhavana Sruthi, KV Nanda Kumar, J Bhavitha, K Jeevitha
Department of Pharmaceutical Analysis, Krishna Teja Pharmacy College, Tirupati, Andhra Pradesh

Received: 28 Sept 2023 Revised: 14 Oct 2023 Accepted: 22 Nov 2023

Abstract

The purpose of the investigation was to develop a simple, rapid and accurate RP-HPLC method to determine assay of Metformin Hydrochloride and Empagliflozin in Bulk. The chromatographic separation was performed on Kromosil 250 x 4.6 mm, 5µm. Eluents were monitored on PDA detector at a wavelength of 233 nm using a Buffer: Acetonitrile (45:55v/v). The column temperature was maintained at 30°C. Validation parameters such as systems suitability, linearity, precision, accuracy, specificity, limit of detection (LOD), limit of quantification (LOQ), Stability of sample and standard stock solutions and robustness were studied as reported in the ICH guidelines. The retention time for Metformin Hydrochloride and Empagliflozin was 2.270 min and 3.413 min respectively. Assay method further evaluated for Metformin Hydrochloride and Empagliflozin analysis at low concentration of analyte and found limit of detection is 0.48 and 0.016 ppm respectively and limit of Quantitation is 1.49 and 0.049 ppm respectively. The percentage recovery of Metformin Hydrochloride and Empagliflozin was 99.64% and 99.47% respectively. The %RSD for Metformin Hydrochloride and Empagliflozin was less than 2. Linearity of Metformin Hydrochloride and Empagliflozin performed from 25% to 150% and the R2 is 0.999, intercept and slope found to be \(y = 26850x + 439840 \) and \(y = 47664x + 9394.7 \) respectively. The method was fast, accurate, precise and sensitive hence it can be employed for routine quality control of Metformin Hydrochloride and Empagliflozin containing drug in quality control laboratories and pharmaceutical industries.

Keywords: RP-HPLC, Metformin Hydrochloride and Empagliflozin.

This article is licensed under a Creative Commons Attribution-Non-commercial 4.0 International License. Copyright © 2023 Author(s) retains the copyright of this article.

*Corresponding Author
Govindaswamy Bhavana Sruthi

DOI: https://doi.org/10.47957/ijpday11i4.564

Produced and Published by
South Asian Academic Publications

Introduction

Metformin Hydrochloride is a biguanide derivative which is the most widely prescribed drug to treat hyperglycemia in individuals with Type 2 diabetes especially in overweight patients and is recommended, in conjunction with lifestyle modification (diet, weight control and physical activity), as a first line oral therapy in the recent guidelines of the American Diabetes Association and European Association of the Study of Diabetes. Metformin is one of only two oral anti diabetics in the World Health Organisation Model List of Essential Medicines (the other being glibenclamide). Chemically it is known as1,1-dimethylbiguanide hydrochloride. It is marketed under the trade name Glycomet®, Glucophage and Fortamet. Metformin decreases blood glucose levels by decreasing hepatic glucose production, decreasing intestinal absorption of glucose, and improving insulin sensitivity by increasing peripheral glucose uptake and utilization.1-5 These effects are mediated by the initial activation of AMP-activated protein kinase (AMPK), a liver enzyme that plays an important role in insulin signaling, whole body energy balance, and the metabolism of glucose and fats.6-8 Empagliflozin is a sodium glucose-co-transporter-2 (SGLT-2) inhibitor indicated as an adjunct to diet and exercise to improve glycemic control in adult patients with type 2 diabetes. Chemically it is known as \((2S,3R,4R,5S,6R)-3,4,5\text{-triol. It is marketed under the trade name Jardiance. SGLT2 co-transporters are responsible for reabsorption of glucose from the glomerular filtrate in the kidney.}^{9-10} \) The glucuretic effect resulting from SGLT2 inhibition reduces renal absorption and lowers the renal threshold for glucose, therefore resulting in increased glucose excretion. Additionally, it contributes to reduced hyperglycaemia and also assists
weight loss and blood pressure reduction. The literature survey reveals that there are only two analytical methods available for estimation of Metformin Hydrochloride and Empagliflozin. The reported methods available for the estimation of Metformin Hydrochloride and Empagliflozin individually and in combination are spectrophotometric and HPLC methods. So, we have planned to develop a simple, precise, economic and accurate stability indicating RP-HPLC method development and validation for the estimation of Metformin Hydrochloride and Empagliflozin in synthetic mixture.

Experimental

Materials and methods

Active pharmaceutical ingredients Metformin Hydrochloride and Empagliflozin were obtained as a gift sample from Aurobindo Labs Pvt, Hyderabad. The pharmaceutical dosage forms (Glycomet®, Jardiance) were purchased from local pharmacy. The solvents used in this work were of HPLC grade and obtained from Bress chemicals.

Instrumentation and chromatographic conditions

The analysis was performed on a high performance liquid chromatography system consists of waters 2695 with 2996 module Photo Diode Array detector equipped with a quaternary solvent delivery pump, automatic sample injector and column thermostat. The data acquisition and analysis was performed by using Empower 2 software. The chromatographic separation was performed on Kromosil 250x4.6 mm, 5µm. The flow rate was kept at 0.8ml/min. The column temperature was maintained at 30°C. The mobile phase was made of 0.1% Ortho Phosphoric Acid Buffer and Acetonitrile taken in the ratio 45:55. The mobile phase had gave acceptable retention time and good resolution between Metformin Hydrochloride and Empagliflozin. The method was optimized at 233nm.

Data acquisition and processing was performed by using empower2 system software. The run time was taken as 6min. All the determinations are carried out at an ambient temperature.

Preparation of Standard stock solutions

Accurately weighed and transferred 125 mg of Metformin Hydrochloride and 12.5 mg of Empagliflozin and the solutions were injected six times and the parameters like peak tailing, resolution, and USP plate count were determined.

System suitability parameters

The system suitability parameters were determined by preparing standard solutions of Metformin Hydrochloride and Empagliflozin and the solutions were injected six times and the parameters like peak tailing, resolution, and USP plate count were determined.

Linearity

The linearity of the method is determined by preparing three individual series of solutions in the range of Metformin Hydrochloride (125-750µg/ml) and Empagliflozin (3.125-18.75µg/ml). The obtained peak areas are plotted against concentration.

Preparation of Standard stock solutions

Accurately weighed and transferred 125 mg of Metformin Hydrochloride and 12.5 mg of Empagliflozin and the solutions were injected six times and the parameters like peak tailing, resolution, and USP plate count were determined.

Precision

(a) Method precision (repeatability)

The method precision/ repeatability can be determined by injecting six working standard solutions. The areas of all the injections were taken and standard deviation, %Relative standard deviation, %assay were calculated.

(b) Intermediate precision

The intermediate precision can be determined by injecting six working standard solutions on different days by different operators or by different instruments. The areas of all the injections were taken and standard deviation, %Relative standard deviation, %assay were calculated. The results obtained were within the acceptance criteria.

Accuracy

Accuracy is tested by the standard addition method at three different levels 50, 100 and 150%. The percentage recoveries of Metformin Hydrochloride and Empagliflozin were calculated.
Preparation of Standard stock solutions
Accurately weighed 125mg of Metformin, 12.5mg of Empagliflozin and transferred to 25ml and 100ml volumetric flasks separately. 3/4th of diluents was added to both of these flasks and sonicated for 10 minutes. Flasks were made up with diluents and labeled as Standard stock solution 1 and 2. (5000µg/ml of MET and 125µg/ml of EMPA)

Preparation of 50% Spiked Solution
0.5ml of each sample stock solution was taken into a 10ml volumetric flask, to that 1.0ml from each standard stock solution was pipetted out, and madeup to the mark with diluent.

Preparation of 100% Spiked Solution
1.0ml of each sample stock solution was taken into a 10ml volumetric flask, to that 1.0ml from each standard stock solution was pipetted out, and madeup to the mark with diluent.

Preparation of 150% Spiked Solution
1.5ml of each sample stock solution was taken into a 10ml volumetric flask, to that 1.0ml from each standard stock solution was pipetted out, and madeup to the mark with diluent.

Limit of detection and limit of quantification
Limit of detection (LOD) and limit of quantification (LOQ) of Metformin Hydrochloride and Empagliflozin were determined by calibration curve method.

Method robustness
The robustness can be determined by varying the following parameters:
Robustness of the developed method was determined by making small deliberate changes in flow rate (±0.2ml/min), column temperature (±5%), organic mobile phase ratio (±5%), along with the optimized method.

Forced degradation studies Oxidation:
To 1 ml of stock solution of Metformin Hydrochloride and Empagliflozin, 1ml of 20% hydrogen peroxide (H2O2) was added separately. The solutions were kept undisturbed for 30 min. For HPLC study, the resultant solution was diluted to obtain 500µg/ml and 12.5µg/ml of all components and 10 µl were injected into the system and the chromatograms were recorded to assess the stability of sample.

Acid Degradation Studies
To 1ml of sample stock solution of Metformin Hydrochloride and Empagliflozin, 1 ml of 2N Hydrochloric acid was added and the samples were left undisturbed for 30 minutes on a bench top and the solutions were neutralized by adding 1ml of 2N NaOH. The resultant solutions were diluted to obtain 500µg/ml and 12.5µg/ml of Metformin Hydrochloride and Empagliflozin and 10 µl solutions were injected into the system and the chromatograms were recorded to assess the stability of sample.

Alkali Degradation Studies
To 1ml of sample stock solution of Metformin Hydrochloride and Empagliflozin, 1 ml of 2N Sodium Hydroxide was added and the samples were left undisturbed for 30 minutes on a bench top and the solutions were neutralized by adding 1ml of 2N HCL. The resultant solutions were diluted to obtain 500µg/ml and 12.5µg/ml of Metformin Hydrochloride and Empagliflozin and 10 µl solutions were injected into the system and the chromatograms were recorded to assess the stability of sample.

Photolytic Degradation Studies
1 ml of sample stock solution of Metformin Hydrochloride and Empagliflozin was subjected to UV Light up to 200 Watt hours/m² up to 30 minutes. For HPLC study, the resultant solution was diluted to obtain 500µg/ml and 12.5µg/ml of Metformin Hydrochloride and Empagliflozin and 10 µl were injected into the system and the chromatograms were recorded to assess the stability of sample.

Neutral Degradation Studies
1 ml of sample stock solution of Metformin Hydrochloride and Empagliflozin was treated with 1 ml of HPLC grade water and the samples were left undisturbed for 30 minutes on a bench top and then diluted to obtain 500µg/ml and 12.5µg/ml of Metformin Hydrochloride and Empagliflozin respectively and 10 µl were injected into the system and the chromatograms were recorded to assess the stability of sample.

Results and Discussions
Development and optimization of HPLC method
The present work was focused to develop stability indicating RP-HPLC method for the simultaneous estimation of Metformin Hydrochloride and Empagliflozin in synthetic mixture. The solubility of the active pharmaceutical ingredients were checked in different solvents like methanol, water, Acetonitrile and in different ratios but finally the standards were soluble in water: acetonitrile (50:50) so it was chosen as a diluent. The different mobile phases like Acetonitrile and potassium dihydrogen phosphate buffer and water: methanol were used in compositions with a flow rate of 1ml/min but the peak resolution, retention time and tailing factor were not satisfactory so at last 0.1% orthophosphoric acid and Acetonitrile was selected as a mobile phase at flow rate of 0.8ml/min. Initially “HypersilBDS” (250mmx4.6mmx5µ) columns with different temperatures like 30, 35, 40, 45°C were used but the retention time, run time and peak resolution were not exact and the problem was get rid by using “kromosil18”(250mm x 4.6mm x 5µ) kept at 30°C with a run time of 6 minutes. Finally the method was optimized by altering the mobile phase composition / ratio and the optimized wavelength of two drugs Metformin Hydrochloride and Empagliflozin was found to be at 233nm.
Forced degradation studies:
The stability studies were conducted by exposing the dosage forms to different stress conditions like acid, base, peroxide, light and water. It was found that the dosage forms were slightly degraded in acid, base and peroxide but stable in photolytic and hydrolytic conditions.

System suitability parameters
The system suitability tests were conducted before performing the validation and the parameters were within the acceptance criteria like retention times were 2.270 min and 3.413 min for Metformin Hydrochloride and Empagliflozin, plate count was >2000, peak tailing was <2 and the %RSD of peak areas of six injections were ≤ 2% (Table 1). Hence the proposed method was successfully applied to routine analysis without any problems.

Linearity range
The linearity range was in the interval of Metformin Hydrochloride, (500-2500 ng/spot) and Empagliflozin (20-100 ng/spot) respectively. These were represented by a linear regression equation as follows: (Metformin Hydrochloride) \(y = 3.5755x - 242.53 (r^2 = 0.999) \) and (Empagliflozin) \(y = 33.953x - 112 \). Regression line was established by least squares method and correlation coefficient \(r^2 \) for Metformin Hydrochloride and Empagliflozin were found to be greater than 0.999. Hence the curves established were linear (Table 1).

<p>| TABLE 1. Linearity data for Empagliflozin and Metformin |
|----------------|----------------|----------------|
| Empagliflozin | Metformin |
|----------------|----------------|----------------|</p>
<table>
<thead>
<tr>
<th>Concentration (ng/spot)</th>
<th>Peak area (mean ± S.D.) (n=3)</th>
<th>%RSD</th>
<th>Concentration (ng/spot)</th>
<th>Peak area (mean ± S.D.) (n=3)</th>
<th>%RSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>571 ± 10.54</td>
<td>1.85</td>
<td>500</td>
<td>1662 ± 21.73</td>
<td>1.31</td>
</tr>
<tr>
<td>40</td>
<td>1240 ± 11.53</td>
<td>1.42</td>
<td>1000</td>
<td>3284 ± 26.95</td>
<td>0.82</td>
</tr>
<tr>
<td>60</td>
<td>1959 ± 31.94</td>
<td>1.63</td>
<td>1500</td>
<td>4961 ± 38.00</td>
<td>0.77</td>
</tr>
<tr>
<td>80</td>
<td>2538 ± 17.62</td>
<td>0.69</td>
<td>2000</td>
<td>6908 ± 64.63</td>
<td>0.94</td>
</tr>
<tr>
<td>100</td>
<td>3318 ± 24.03</td>
<td>0.72</td>
<td>2500</td>
<td>8788 ± 66.53</td>
<td>0.76</td>
</tr>
</tbody>
</table>

Precision
Six replicates injections at the same concentration were analyzed on same day and two different analysts for verifying the variation in the precision and the % RSD for
Metformin Hydrochloride and Empagliflozin were within acceptable limit of ≤2. Hence the method is reproducible on different days with different analysts. This indicates that the method is precise (Table 3).

Accuracy
The percentage recoveries for Metformin Hydrochloride and Empagliflozin were shown in (Table). The results of the recovery studies undoubtedly demonstrate accuracy of the proposed method.

Limit of detection (LOD) and limit of quantitation (LOQ)
The determined values of LOD and LOQ were calculated by using slope and Y-intercept. The LOD and LOQ values for Metformin Hydrochloride and Empagliflozin were found to be 11.47, 34.76 µg/ml and 3.12, 9.48 µg/ml respectively.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Empagliflozin</th>
<th>Metformin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Y- intercept ± S.D. (n=5)</td>
<td>106.92 ± 32.40</td>
<td>246.40 ± 12.46</td>
</tr>
<tr>
<td>Mean slope ± S.D. (n=5)</td>
<td>34.18 ± 0.38</td>
<td>3.59 ± 0.0022</td>
</tr>
<tr>
<td>LOD = 3.3 × (SD/Slope) (ng/spot)</td>
<td>3.12</td>
<td>11.47</td>
</tr>
<tr>
<td>LOQ = 10 × (SD/Slope) (ng/spot)</td>
<td>9.48</td>
<td>34.76</td>
</tr>
</tbody>
</table>

Robustness
Robustness of the proposed method demonstrated a non-significant alteration through analysis of the sample and standard Metformin Hydrochloride and Empagliflozin solution. After this the results obtained were compared with that of optimized method. It was confirmed that by the deliberate changes in the parameters there were no significant changes in standard deviation, relative standard deviation, theoretical plates, retention time and USP tailing factor.

Assay
The content of and Metformin Hydrochloride and Empagliflozin in the pharmaceutical dosageforms was found by using the developed method. The percentage purity of MET and Empagliflozin were found to be 99.90 and 100.59 % and %RSD values for Metformin Hydrochloride, and Empagliflozin were within limit of ≤2.

Forced degradation studies
The forced degradation studies were conducted and all the parameters for Metformin Hydrochloride and Empagliflozin were within the limits. Metformin Hydrochloride and Empagliflozin have shown significant sensitivity towards the treatment of HCl, NaOH and peroxide solutions. The drugs gradually undergone degradation with time and prominent degradation was observed. Metformin Hydrochloride and Empagliflozin were stable under forced photolytic and neutral degradations. From the degradation studies, Peak purity test results derived from PDA detector, confirmed that the Metformin Hydrochloride and Empagliflozin peaks were homogeneous and pure in all the analyzed stress samples. The mass balance of stressed samples was close to 97.61%.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Empagliflozin</th>
<th>Metformin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linearity range</td>
<td>20-100 ng/spot</td>
<td>500-2500 ng/spot</td>
</tr>
<tr>
<td>Regression line equation</td>
<td>y = 33.953x - 112</td>
<td>y = 3.5755x - 242.53</td>
</tr>
<tr>
<td>Correlation co-efficient(R²)</td>
<td>0.9985</td>
<td>0.9984</td>
</tr>
<tr>
<td>Precision (%RSD)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repeatability of measurement (n=7)</td>
<td>0.49</td>
<td>0.44</td>
</tr>
<tr>
<td>Repeatability of sample application (n=7)</td>
<td>0.71</td>
<td>0.67</td>
</tr>
<tr>
<td>Intra-day precision (n=3)</td>
<td>1.01-1.29</td>
<td>0.67-1.23</td>
</tr>
</tbody>
</table>
Conclusion
The stability indicating method is one of the analytical tools that help to evaluate stability of drug substances under influence of various degradation conditions. It also can be used to evaluate possible degradation product in final dosage form. The combination of Empagliflozin and metformin hydrochloride is not official in any of the pharmacopoeias, so no official method is available for analysis of Empagliflozin and metformin hydrochloride and its degradation products. Present study aimed at evaluating degradation behavior Empagliflozin and metformin hydrochloride in different stress conditions. Stability indicating HPTLC method was developed and validated as per ICH guidelines. The method was found to be specific, linear, precise and accurate. The method can be used for routine assessment of Empagliflozin and metformin hydrochloride in bulk. From stress testing, Empagliflozin was found to be significantly degrading in acidic, alkaline, oxidative, photolytic and dry heat degradation conditions. While, metformin hydrochloride was found to be significantly degrading in acidic and alkaline degradation conditions, while stable in oxidative, photolytic and dry heat degradation conditions.

Acknowledgements
The authors were thankful to Krishna Teja Pharmacy College, Tirupati for providing the facilities to carry out the research work.

Disclosure of interest
The authors declare that they have no conflicts of interest concerning this article.

References
4) BenoitViolet, BrunoGuigas, NievesSanzGarcia, Jocelyne Leclerc, MarcForetz, and FabrizioAndreelli, cellular and molecular mechanisms of Metformin: An overview, Clinical Science

